Dry I ce Maker

OPERATING INSTRUCTI ONS

I mportant: This machine can only be used with a liquid CO_{2} cylinder equipped with a built in siphon tube. When ordering CO_{2} be certain to get liquid CO_{2} with a siphon.

1. Firmly connect machine hose to CO_{2} cylinder. Use plastic washer supplied for inside of hexagonal nut that attaches to cylinder.
2. Ensure nothing obstructs flow of CO_{2} through hose. Attach end of hose firmly to top fitting on Dry Ice Machine.

3. Open dry ice block machine by loosening latches and folding down sides. Remove block for use or storage. Caution: always wear protective gloves when handling dry ice; can cause burns and frostbite. Blocks can be stored in Dilvac Dewar Flasks.
4. During and after making dry ice block, handle feed hose carefully. Hose will appear white and is frozen. If bent, pulled or twisted hose can be damaged or broken.

WARNING

1. Gaseous CO_{2} vapours can cause suffocation. Use machine only in well ventilated areas.
2. Disconnect feed hose of machine from cylinder when not in use. Store cylinder indoors or in shade, away from any heat source. (See Helpful Information below)
3. Use machine only on level supporting surface during operation. Never allow machine to hang from feed hose.

SPECI FI CATI ONS	MODEL A
Dimensions of dry ice	$80 \times 110 \times 180$
Weight of dry ice block	$1 \mathrm{Kg} \pm 10 \%$
Yield from 34Kg liquid CO_{2} cylinder at room temperature.*	$5-6$ blocks \dagger
Total weight of dry ice	$6 \mathrm{Kg} \pm 10 \% \dagger$

* A 34 Kg CO 2 cylinder at room temperature will contain approximately 30 Kg of useable liquid CO_{2}, the balance is vapor which does not convert to solid dry ice. \dagger Yield can be appreciably increased at lower temperatures i.e. @ $0^{\circ} \mathrm{C}$ approximately $1 / 3$ more blocks will be produced.

HELPFUL INFORMATI ON

Conversion Weight: The usual 34 Kg liquid CO_{2} cylinder actually contains only 30 Kg of liquid CO_{2}, the remaining 4 Kg is vapour gas which does not convert to solid dry ice.

Weight Checks: Empty cylinder weight (Tare) is stamped on shoulder of cylinder below threaded fitting. Cylinder should read $65 \mathrm{Kg} \pm 1 \mathrm{Kg}$ Gas and filled should weigh $99 \mathrm{Kg} \pm 1 \mathrm{Kg}$.

TEMPERATURE	LIQUID CO	
2	VAPOUR	
$16^{\circ} \mathrm{C}$	72%	28%
$21^{\circ} \mathrm{C}$	70%	30%
$27^{\circ} \mathrm{C}$	61%	39%
$31^{\circ} \mathrm{C}$	0%	100%

Above $31.1^{\circ} \mathrm{C}$ (the critical temperature) only vapour exists in the cylinder and no additional dry ice will be formed.

Storage: If possible, CO_{2} cylinder, dry ice machine and feed pipe should be kept in a low temperature environment up to time of usage. This will increase the yield of dry ice.

Making Dry Ice from Liquid $\mathbf{C O}_{2}$: Converting liquid CO_{2} to solid dry ice blocks is accomplished by utilizing Adiabatic Expansion Principle (The Joule Thompson Effect).

When liquid CO_{2} is released from cylinder through the supply valve and feed tube, it leaves at an environmental pressure of 838 PSI and is forced through the tube into the ice making unit, which is at atmospheric pressure.

It then vaporizes and expands to form snow which packs onto retaining walls lined with specialized filter pads whilst CO_{2} gas escapes through ports and filters. The machine fills with dry ice within 1-2 minutes. The colder the components, the shorter the fill time.

At $21^{\circ} \mathrm{C}$ and $775-800 \mathrm{PSI}$, the method described is 26.15% efficient. At $0^{\circ} \mathrm{C}$ and 290 PSI efficiency is increased to 39%. The lower the temperature, the greater the yield of dry ice.

